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Conventional shock tubes are  used in 

A 
the temperature range 5,000-15,000% f o r  mea- 

', L 7 ' suring atomic t r ans i t i on  p robab i l i t i e s  

( "osc i l l a to r  s t rengths") .  Reduction of l i n e  

in t ens i t i e s  t o  atomic constants proceeds 

h o w l e c l g e  of gas conditions. Results f o r  C r  I 

and C r  I1 l i nes  are discussed, h s e d  oii r m r -  

iments i n  the Michigan shock tube. Experience 

vi tn '  t h i s  instrunent i s  reviewed regardlng mea- 

sured pressures, temperatures and f lor-durat ions.  

Propert ies  of the new Varyland shock tube give 

greater  f l e x i b i l i t y  f o r  spectroscopic work. An 

improved flash-lamp allows temperature measure- 

ments at l e a s t  up t o  l5,OCQ@X by means of spec- 

tral line-reversal. This and other  techniques 

w i l l  provide m l t a n e o u s  and independent ~ t s t e  

measurements, so t ha t  shock tube theory can be 

checked rather  than be r e l i ed  upon in  the de- 

termination of o sc i l l a to r  strengths. 
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1. General Discussion 

During the past  ten years, various types of shock tubes have 

increasingly been used a s  l i g h t  sources fo r  atomic and molecular 

spectroscopy. 

of line-broadening p a m e t e r s  and radiat ive t ransi t ion probabilities. 

Conventional ( i .e . ,  gas driven) tubes operate up t o  15,Wo°K, ex- 

plosively driven tubes somewhat higher, and e lec t r i ca l  tubes up 

t o  50,W°K easi ly .  

one might c a l l  the "hyperadiatetic" heating of material induced by 

i t s  passage through n shock front .  The temperature r a t i o  acro66 a 

shock wave can be much higher than tha t  fo r  an imntropic  procees 

of the same pressure rat io ,  because of the pressure-density r e l a -  

t i ons  pecul iar  t o  shock-wave thermodynamics. This theory, i n  addi- 

t ion,  predicts  the gaseous s ta te-var iables  f r o m  simple observable6 

(such as the  Shock ~ a v e  veloci ty)  and says tha t  the temperatures 

achieved may be systen-tically varied over a wide range by adjust-  

iaents of tne experimental parameters. Sa it was generally hoped 

Principal  a t t en t ion  has been given t o  measurements 

The in t e re s t  i n  a l l  of these s t e m s  from vhat 

t ha t  atomic constants could readi ly  be measured by correlat ing the 

observed spectra witn the calculated temperatures, le-rel populations, 

f r ac t iona l  Ionizations, etc. Thus one could expect t o  get precise 

f-values f o r  many atoms and ions and good linz-shapes as functions 

of ion and electron density, and thereby have in hand those quanti- 

t i e s  ne;essar?. f a r  maerstandine othL=r  l i -ht  S O U ~ L - P S  such us s t e l l n r  

atmospheres. 

I n  a m d i f i i d  Torn,  t n i s  vie', ha0  been borne out, but the in-  

tervening years have shown tht shock tube plasmas are  not always 

described by t i l e  si.!ple Rankine-Hugoniot theory. This realization 

has come with the developent  of d i r ec t  state-measurements on the 

hot gas, and now the prevai l ing view seems t o  be tha t  such m e a s u ~ .  

ments are  e s sen t i a l  t o  any shock tube-spectroscopic pro-. 

the general area of temperature measurements, fo r  example, it has 

cnmntimPc k e n  chse-d "i?h convs.tional ?ubes t h ~ t  f l n r  &LF-ticns 

are too short  t o  a l low complete relaxation t o  thermal equilibrium 

and tha t  the "temperatures" f o r  ionization and exci ta t ion may 

therefore by much lower than the gas-kinetic temperature.1'2 An 

opposite e f f ec t  i s  sometimes encountered with e l ec t r i ca l  shock 

tubes, where the intense luminosity of the driving a rc  ionizes 

the gas ahead of the Shock t o  an extent t ha t  the gas behind it, 

though i n  equ i l ib r im,  is much ho t t e r  than one would expect from 

the shock speed alone. 3'4 

In  

Since these and many other e f f ec t s  can occur (and since a 

complete theo re t i ca l  accounting fo r  them is not l i ke ly )  the most 

f r u i t f u l  procedure is t o  mahe several independent state-measure- 

ments of suff ic ient  qual i ty  that the spectroscopic r e su l t s  have a 

clear ly  defined and usef i l  precision, i r respect ive of camprisons 

with W i n e - m g o n i o t  theory. 

These comparisons a re  s t i l l  useful, however, from another 

point of view. We wi l l  give an example b e l o w  of how such observa- 

t i ons  not only give clues  as t o  plasma non-uniformity ( a  potent ia l  

d i f f i cu l ty  with all spectroscopic sources) but also indicate how 

those d i f f i cu l t i e s  can be minimized. Thus we take the dua l i s t i c  

p i n t  of view t h a t  one should measure the hot gas conditions as 

completely as possible and continually se t  these refiults against 

compressible flow theory. In  t h i s  m y  the experimentor @ins botn 

the desired spectroscopic information and a be t t e r  understanding 

of the processes in  hi6 spectroscopic source. 

give of both procedures stem from our with h e r ' s  con- 

ventional shock tube' a t  the University of Michigan in Prof. Otto 

l apor t e ' s  laboratory. 

ods a t  the University of Varyland. As before, we intend measuring 

OscilLator s t rengths  f o r  l i nes  of astrophysically in t e re s t ing  ele- 

ments and finding line-broadening parameters wherever iecsible. 

2. Effects  of Eaundary layers .  

The examples we w i l l  

We are current ly  using these and other  metb- 

To i l l u s t r a t e  the u s e m e s s  of canparison6 with ideal  shock 

tube theory, we consider f i r s t  the customary mve dingram (F iwre  

1) fo r  conventional tubes, with distance running t o  thc r igh t  and 

t i ne  upwards. For  strong Shocks in the rare gnses (with no ioni-  

zat ion)  the density r a t i o  fi/f', asp@mticall!/ nuproa':hei 4. 

and PA/?, 
compressed gas, whose spectrum is  observed a t  far r ight ,  has a den- 

s i t y  roughly 10 times the value i n i t i a l l y  s e t  in the r ight  hand 

chamber. Hence i ts  length should be no less t h n  1/10 the Chrm- 

ber length when the ref lected shock and in te r l 'nce  interact, no 

matter what the i n i t i a l  pressurc 

approaches 2.5 fzum k l u i .  Xur, L ~ L C  i m L ,  &iuuuly 

bd 
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NOW, one night be prepared for  s a  deviations due t o  imper- 

f e c t  diaphragm breakage, but the actual  performance is  f a r  worse, 

86 indicated i n  Figure 2. This shows several wave-photographs of 

the ref lect ion process with time now running t o  the r ight .  With 

decreasing i n i t i a l  pressure , the length $ (betireen the end 

w a l l  and the i n t e r f x e  ir?cr_c?icn) dccrccccr. 'vitk3ut 1i-it. 

cause o r  t h i s  i s  boundary layer growth on the tube walls and g a s  

mixing, which impzrl. an increasing three-dinensionality t o  the p r i -  

mary flow a s  the i n i t i a l  pressure i s  lowered. Though these e f f ec t s  

Po 

Thc 

received some ear ly attention a t  Toronto and Michigan, and by Toe- 

M i e s  and Greene' a t  Brom University, the f i r s t  systematic study 

was made by Duff 

Extensive s tudies  have followed by I(oshk0'l and Hooker.l2 

i o  
a t  Los Mamas using an electron-beam densitometer. 

The obvious pract ical  e f f e c t  i s  t o  reduce the tirie of observa- 

t i on  a t  any s ta t ion and therefore t o  reduce one's a b i l i t y  t o  observe 

conditions which are niliy relaxed t o  the rm1  equilibrium. A Less 

obvious matter i s  what happens t o  the gross flow variables, pa r t i c -  

u l a r ly  the gas density. One might naively ascr ibe t h i s  decreasing 

flow length t o  an increasing compression r a t io ,  CR, i . e . ,  an anom- 

alously h i@ density across the en t i r e  flow cross-section. This 

16 fortunately not the case, but  it i s  t rue tha t  high dens i t i e s  are  

developed in  the w a l l  boundary layer, and the hot gas can therefore 

be made highly non-uniform along any l i ne  of s ight .  Since t h i s  be- 

comes worse with decreasing 6. , one i s  c l ea r ly  best off with the 

highest lo consistent with the  desired tenpernture and at ta inable  

d r ive r  gas pressures. 

We have a l so  verified tha t  these e f f ec t s  of decreased t e s t i n 8  

time and increased non-unifomity become worse with an increasing 

r a t i o  of surlace t o  volune. Witn s m a l l  tubes operating a? o r  be- 

low a m (iig) pressure, one must c lear ly  be very careful  about uni- 

formity along the spectroscopic l i ne  of s ight .  For r e a l i s t i c  aero- 

dynamic experiments i n  the low pressure regime, lorge dinmeter tubes 

such as t ha t  used at Avco Seem imperative. We have designed the 

new shock tube a t  Maryland around an in i t i n l  pressure range of 1 

t o  10 cm (Hg). 

angular, it allows c l ea r  representations o f  w a l l  boundary layers  

as with the Michigan tube (Figure 3). 

ures  2 and 3 a r i s e s  not from ionization but r a the r  a non-equilibrium 

The cross-section is  about 8 x 10 cm; being rect- 

The luminosity i n  both Fig- 

4 
The 

emission by the C 

(added t o  the neon carr ier  gas i n  amounts l e s s  than 1%). 

operating range of the new shock tube yields  thinner  and almost 

wholly turbulent boundary layers  and provides about 200 micro- 

seconds of steady conditions behind the ref lected shock, near 

the  tube 's  end w a l l .  

3. Temperature Measarements 

molecule a r i s ing  from the pyrolysis of CH 

Having made such kinematic comparisons with bydrodynsmic 

theory i n  O*r t o  f ind some operating conditions which seemed 

be t t e r  than others, we had then t o  measure the s ta te-var iables  

d i r ec t ly  t o  put  a Solid foundation under our spectroscopic resul ts .  

The predicted pressures vere confimed13 t o  within 5% by means of 

quartz transducers having response times of order 3 microseconds. 

The most informative study for Spectroscopic purposes was the mea- 

surement of e lectronic  excitation teinperature by means of spec t r a l  

l i ne - r eve r se1 .7 '~~ '  '5 

Some line-=versa1 resul ts  are shorn i n  Figure 4, WMR we 

heve verif ied shock turn tneory f o r  rhc cenperature behind the 

\s\ 
c- 

ref lected shock, over a 

tal axis). 

neon i n  order t o  generate m y  l ines  of C r  I and C r  I1 and meas- 

t h e i r  t r ans i t i on  probabi l i t ies .  The theory predicts  severe temp- 

erature  depression r e l a t ive  t o  the case 01 pure neon, and t h i s  i s  

borne out by these measurements. This temperature e f f e c t  a r i s e s  

primarily fmm dissociat ion of the s i x  CO poups  coming out  of 

eacn C r  (CO)  molecule. Using such vo la t i l e  metal compounds, one 

gets  the metal i n to  the gas phase with known abundance; temperature 

measurements then specify the ionizntion and exci ta t ion equi l ibr ia ,  

and the observed spec t r a l  l i ne - in t ens i t i e s  can then be converted 

range of Primary Shock s t rength (horizon- 

These experiments involved 3/1@ chmmim carbonyl i n  

6 

i n t o  absolute ato,nic t r ans i t i on  probabi l i t ies .  

Some of the chromiw. l i n e s  a re  evident i n  the t i ne  resolved 

spectrogrmn of F i w r e  5, w h e r e  we a l so  see tne varying continuum 

intensi ty  due t o  the l ine-reversal  l m ~ . ' ~  Without such a l m p ,  

these shock tube s w c t r a  show only f a i n t  continua under strong 

l ines .  Viewing the lamp througn the shock tube @s, we see the 

gas i n  absorption when the f l a sh  lamp is "hotter" than the gas. 

A t  reversal, a l l  spec t r a l  features  disappear; the Planck function 

f o r  the shock tube gas is put i n  evidence y& absolute intensi ty  

cal ibrat ion of the f l a sh  lamp. 

e ra tu re  for  a l l  spectral  l ines ,  regardless of t h e i r  exci ta t ion 

potent ia ls ,  which i s  t o  say that  thermalequi l ibr ium i s  achieved 

t o  within the 3dp ineasurement error .  

We f ind  reversal  at the same temp- 

- 

The r e su l t s  no farb'7 a re  that we have absolute t r ans i t i on  

probabi l i t ies  (16 - 15% precis ion)  for fo r ty  l i nes  of C r  I and 

twenty lines of Cr 11, which can now be turned t o  temperature and 

abundance determinations in  other  spectroscopic sources. I n  pa r t i c -  

ular, our revision of the r e l a t ive  scale  for C r  I appears t o  have 

cleared up a previous d i f f i cu l ty  in  interpret ing Fraunhafer inten- 
1" 

s i t i r s  i n  the so i a r  spectrum. L' 

4. Conclusion 

Our present and future  expe rhen t s  are b u i l t  upon t h i s  pre- 

ceding work we ha= b r i e f ly  described. The new shock tube has 

j u s t  begun t o  operate and appears t o  f u l f i l l  i ts  design, namely 

tha t  the tube cross-section end useful  i n i t i e l  pressures are suf-  

f i c i en t ly  Lsr@ tha t  the flow f i e l d s  are  not grossly d i s to r t ed  by 

boundary layers  and that steady conditions prevai l  long enough for 

t h e m 1  equilibrium t o  be obtained in  most cases. 

temperature range is 5,000 - 15,000 K and therefore allows a range 

The accessible 
0 

of spectroscopic s tudies  from molecules and mi t a l l i c  atons, a t  one 

end, t o  most s ingle  ions a t  the other. Similar work enphasizing 

metal l ic  spectra continues at Michigan under &porte and at Ohio 

Sta t e  University under S l e t t e W .  We plan t o  concentrate on the 

mare abundant l ight elements such a s  carbon, owgen and su l fu r  and 

t o  bu t t r e s s  the r e su l t s  with an increasing number of independent 

state-measurements. A new f l a sh  lamp is  now i n  operation giving 

maximum brightness temperatures - 20,000'K and therefore  allaw- 

ing reversal  temperature measurements over the en t i r e  ant ic ipated 

range. 

modified f o r  use with the new tube so t h a t  e lectron densities18 can 

be measured d i r ec t ly  do- t o  10l6 ( o r  t o t a l  pa r t i c l e  dens i t i e s  

i n  cases of low ionizat ion) .  

be zeasured with quartz gauges. Since hydrogen is a const i tuent  

of many spectroscopic addi t ives .  the & h e r  spectrum G i l l  of ten be 

ohserved and w i l l  provide checks on the temperature and electron 

density & l i ne  in t ens i ty  and l i n e  shape.ig120 AS w e l l  a s  measuring 

An op t i ca l  interferometer (Nach-Zehnder, 30 c m )  is  being 

Absolute pressures W i l l  continue t o  

Y 
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atomic t r ans i t i on  probabi l i t ies ,  we plan t o  deduce Stark-broadening 

parameters for those l i n e s  possessing measurable shapes and t o  in- 

vestigate the sources of continuous spectra. 
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COMPRESSION \DIAPHRAGM E X  PANSION END OF' 
CHAMBER LOCAT I ON CHAMBER TUBE 

MULTIPLE 
SHOCK 
REFLECTION 

REFLECTED 
SHOCK 

PRIMARY 
SHOCK 

-DISTANCE (a )  c 

Figure 1. Space-time diagram of nave motion i n  conventional shock 
tube. Tne Lest  gas ( e . & ,  neon pius spectroscopic addi- 
t i ve )  is compressed by primary and ref lected shock waves, 
and i ts  emission spectrum i s  observed a t  f a r  r i gh t .  
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Figure 2. Shortening of flow column a s  function of i n i t i a l  pressure 

observing time with decreasing 
. Growth of boundary layers  causes decreasing 

P. 

Figure 3.  Transient C e!nissxon m the primry flow, induced by 
m o : t < m  of2Ci! t o  neon. Luminosity shows plane shock 
iaiiaweu by t u k u l c n t  boundary layers  on tube walls. 
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Fiwre  4. Theory and experiment for temperature behind reflected 
shock (Tp) as  k c t i o n  of primary shock strenah. 
reversal temperatures confirn predictions fcr 3/10 $ 
chmmim carbonyl in neon. 

Line- 

1 FLASH CONTINUUM r- T 
I I 

6 -~ REVERSAL 
POINTS 

\END OF TEST 
SECTION 

28.339 I(94) 

15275.688 I" I(94) 

m8.436 
5206.039 I ( 7 1 
5204.5 I8 

Figure 5 .  Composite of space-time photograph and time-msolved 
spectrogrm for line-reversal experiment on chromium 
l ines .  Predicted: T = 672C t 105%; Measured: 
Tg = 6599 f 112% and'6473 t 145% on f i r s t  and Second 
reversals. 
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D I S C U S S I O N  

_-________ 

Question by R . S .  BERRY (U.S.A.) : 

Will you be able to carry your intensity measurements to  the limit of the 

quartz region ? 

Answer by G. CHARATIS (U. S. A. ) : 

Yes,  we will be able to carry these temperatures hopefully do- to 2000 

by means of quartz windows. 

I 
, 

I .  
* .  

\ 


